Music and speech in early development: automatic analysis and classification of prosodic features from two Portuguese variants
نویسندگان
چکیده
In the present study, we aim to capture rhythmic and melodic patterning in speech and singing directed to infants. We address this issue by exploring the acoustic features that best predict different classification problems. We built a database composed by infant-directed speech from two Portuguese variants (European vs Brazilian Portuguese) and infant-directed singing from the two cultures, comprising 977 tokens. Machine learning experiments were conducted in order to automatically discriminate between language variants for speech, vocal songs and between interaction contexts. Descriptors related with rhythm exhibited strong predictive ability for both speech and singing language variants’ discrimination tasks, presenting different rhythmic patterning for each variant. Moreover, common features could be used by a classifier to discriminate speech and singing tasks, indicating that the processing of speech and singing might share the analysis of the same properties of the stimuli. With respect to discrimination between different interaction contexts, pitch-related descriptors showed better performance. Therefore, we conclude that prosodic cues present in the surrounding sonic environment of an infant are sources of rich information not only to make distinction between different communicative contexts through melodic cues, but also to provide specific cues about the rhythmic identity of their mother tongue. These prosodic differences may lead to further research on their influence in infant’s development of musical representations.
منابع مشابه
شناسایی خودکار سبک موسیقی
Nowadays, automatic analysis of music signals has gained a considerable importance due to the growing amount of music data found on the Web. Music genre classification is one of the interesting research areas in music information retrieval systems. In this paper several techniques were implemented and evaluated for music genre classification including feature extraction, feature selection and m...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملAutomatic classification of Non-alcoholic fatty liver using texture features from ultrasound images
Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...
متن کاملAutomatic Identification and Classification of the Iranian Traditional Music Scales (Dastgāh) and Melody Models (Gusheh): Analytical and Comparative Review on Conducted Research
Background and Aim: Automatic identification and classification of the Iranian traditional music scales (Dastgāh) and melody models (Gusheh) has attracted the attention of the researchers for more than a decade. The current research aims to review conducted researches on this area and consider its different approached and obstacles. Method: The research approach is content analysis and data col...
متن کاملThe effect of bilateral subthalamic nucleus deep brain stimulation (STN-DBS) on the acoustic and prosodic features in patients with Parkinson’s disease: A study protocol for the first trial on Iranian patients
Background: The effect of subthalamic nucleus deep brain stimulation (STN-DBS) on the voice features in Parkinson’s disease (PD) is controversial. No study has evaluated the voice features of PD underwent STN-DBS by the acoustic, perceptual, and patient-based assessments comprehensively. Furthermore, there is no study to investigate prosodic features before and after DBS in PD. The curren...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010